Strongly cotop modules

Authors

Abstract:

In this paper, we introduce the dual notion of strongly top modules and study some of the basic properties of this class of modules.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

strongly cotop modules

in this paper, we introduce the dual notion of strongly top modules and study some of the basic properties of this class of modules.

full text

Strongly noncosingular modules

An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...

full text

strongly noncosingular modules

an r-module m is called strongly noncosingular if it has no nonzero rad-small (cosingular) homomorphic image in the sense of harada. it is proven that (1) an r-module m is strongly noncosingular if and only if m is coatomic and noncosingular; (2) a right perfect ring r is artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...

full text

STRONGLY DUO AND CO-MULTIPLICATION MODULES

Let R be a commutative ring. An R-module M is called co-multiplication provided that foreach submodule N of M there exists an ideal I of R such that N = (0 : I). In this paper weshow that co-multiplication modules are a generalization of strongly duo modules. Uniserialmodules of finite length and hence valuation Artinian rings are some distinguished classes ofco-multiplication rings. In additio...

full text

Strongly ω-Gorenstein Modules

We introduce the notion of strongly ω -Gorenstein modules, where ω is a faithfully balanced self-orthogonal module. This gives a common generalization of both Gorenstein projective (injective) modules and ω-Gorenstein modules. We investigate some characterizations of strongly ω -Gorenstein modules. Consequently, some properties under change of rings are obtained. Keywords—faithfully balanced se...

full text

(n, m)-Strongly Gorenstein Projective Modules

This paper is a continuation of the papers J. Pure Appl. Algebra, 210 (2007), 437–445 and J. Algebra Appl., 8 (2009), 219–227. Namely, we introduce and study a doubly filtered set of classes of modules of finite Gorenstein projective dimension, which are called (n, m)-strongly Gorenstein projective ((n, m)-SG-projective for short) for integers n ≥ 1 and m ≥ 0. We are mainly interested in studyi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  13- 29

publication date 2015-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023